一🦹♀️、代表性论文 [1] Zhu ZY, Zheng HF, Kong H*, Ma XL*, Xiong JY*. Passive solar desalination towards high efficiency and salt rejection via a reverse-evaporating water layer of millimeter-scale thickness. Nature Water, 2023, DOI: 10.1038/s44221-023-00125-1. [2] Wang HM, Guo DD, Zhang WR, Zhang R, Gao Y, Zhang XK, Liu W, Wu W, Sun LH, Yu XF, Zhao J, Xiong JY*, Huang SD*, Wolfson JM, Koutrakis P. Observation, prediction, and risk assessment of volatile organic compounds in a vehicle cabin environment. Cell Reports Physical Science, 2023, 4: 101375. (IF=8.9; Nature Research Highlights) [3] Yang T, Xiong JY*, Tang XC, Misztal PK. Predicting indoor emissions of cyclic volatile methylsiloxanes from the use of personal care products by university students. Environmental Science & Technology, 2018, 52: 14208-14215. (IF=11.4; Cover Paper) [4] Zhang MX, Wang HM, Sun LH, Yu XF, Zhao J, Xiong JY*. Measurement of the diffusion and partition coefficients of 6-methyl-5-hepten-2-one in clothing. Environmental Science & Technology Letters, 2023, 10: 228-233. (IF=10.9; Supplementary Cover Paper) [5] Wang H#, Wang HM#, Wang KL, Xiong JY*, Huang SD*, Wolfson JM, Koutrakis P. Characterization of chemical transport in human skin and building material. Journal of Hazardous Materials, 2023, 458: 131917. (IF=13.6) [6] Wang HM, Wang H, Xiong JY*, Huang SD*, Koutrakis P. A rapid and robust method to determine the key parameters of formaldehyde emissions from building and vehicle cabin materials: principle, multi-source application and exposure assessment. Journal of Hazardous Materials, 2022, 430: 128422. (IF=13.6) [7] Wang HM, Xiong JY*, Wei WJ. Measurement methods and impact factors for the key parameters of VOC/SVOC emissions from materials in indoor and vehicular environments: A review. Environment International, 2022, 168: 107451. (IF=11.8) [8] Wang H, Wang HM, Zhang XK, Xiong JY*, Liu XY*. Investigation on the direct transfer of SVOCs from source to settled dust: Analytical model and key parameter determination. Environmental Science & Technology, 2022, 56: 5489-5496. (IF=11.4) [9] Zhang XK, Wang H, Xu BP, Wang HM, Wang YZ, Yang T, Tan YD, Xiong JY*, Liu XY*. Predicting the emissions of VOCs/SVOCs in source and sink materials: Development of analytical model and determination of the key parameters. Environment International, 2022, 160: 107064. (IF=11.8) [10] Zhang MX, Xiong JY*, Liu YJ, Misztal PK, Goldstein AH. Physical-chemical coupling model for characterizing the reaction of ozone with squalene in realistic indoor environments. Environmental Science & Technology, 2021, 55: 1690-1698. (IF=11.4) [11] Yang T, Wang HM, Zhang XK, Xiong JY*, Huang SD*, Koutrakis P. Characterization of phthalates in sink and source materials: Measurement methods and the impact on exposure assessment. Journal of Hazardous Materials, 2020, 396: 122689. (IF=13.6) [12] Wang HM, Zheng JH, Yang T, He ZC, Zhang P, Liu YF, Zhang MX, Sun LH, Yu XF, Zhao J, Liu XY, Xu BP, Tong LP*, Xiong JY*. Predicting the emission characteristics of VOCs in a simulated vehicle cabin environment based on small-scale chamber tests: Parameter determination and validation. Environment International, 2020, 142: 105817. (IF=11.8) [13] He ZC, Xiong JY*, Kumagai K, Chen WH*. An improved mechanism-based model for predicting the long-term formaldehyde emissions from composite wood products with exposed edges and seams. Environment International, 2019, 132: 105086. (IF=11.8) [14] Xiong JY*, He ZC, Tang XC, Misztal PK, Goldstein AH. Modeling the time-dependent concentrations of primary and secondary reaction products of ozone with squalene in a university classroom. Environmental Science & Technology, 2019, 53: 8262-8270. (IF=11.4) [15] Cao JP, Xiong JY*, Wang LX, Xu Y, Zhang YP. Transient method for determining indoor chemical concentrations based on SPME: Model development and calibration. Environmental Science & Technology, 2016, 50: 9452-9459. (IF=11.4) [16] Huang SD, Xiong JY*, Zhang YP. Impact of temperature on the ratio of initial emittable concentration to total concentration for formaldehyde in building materials: Theoretical correlation and validation. Environmental Science & Technology, 2015, 49: 1537-1544. (IF=11.4) [17] Xiong JY, Wei WJ, Huang SD, Zhang YP*. Association between the emission rate and temperature for chemical pollutants in building materials: General correlation and understanding. Environmental Science & Technology, 2013, 47: 8540-8547. (IF=11.4) [18] Huang SD, Xiong JY*, Zhang YP. A rapid and accurate method, ventilated chamber C-history method, of measuring the emission characteristic parameters of formaldehyde/VOCs in building materials. Journal of Hazardous Materials, 2013, 261: 542-549. (IF=13.6) [19] Xiong JY, Yao Y, Zhang YP*. C-history method: Rapid measurement of the initial emittable concentration, diffusion and partition coefficients for formaldehyde and VOCs in building materials. Environmental Science & Technology, 2011, 45: 3584-3590. (IF=11.4) [20] Xiong JY, Yan W, Zhang YP*. Variable volume loading method: A convenient and rapid method for measuring the initial emittable concentration and partition coefficient of formaldehyde and other aldehydes in building materials. Environmental Science & Technology, 2011, 45: 10111-10116. (IF=11.4) 二🗿、代表性研究项目 [1] 国家自然科学基金面上项目,车内环境中VOCs多源释放和表面反应耦合传输机理研究🧐,2022.1-2025.12🙏🏻,负责人 [2] 国家自然科学基金面上项目🙉,人体皮肤VOCs的散发机理、反应特性及对室内空气质量的影响研究,2018.1-2021.12🍔,负责人 [3] 国家重点研发计划子课题,家具产品中挥发性有机物(VOCs)综合释放机理🤵♀️、承载模型、限量值的研究,2016.7-2020.6,负责人 [4] 美国斯隆基金会项目,Chemistry of Indoor Environments,2016.7-2019.6🧑🏿⚕️🦹🏽♀️,参与 [5] 国家自然科学基金面上项目,室内半挥发性有机物的微观散发机理及界面分配特性研究🎵,2015.1-2018.12,负责人 |